Magnetotactic bacterial response to Antarctic dust supply during the Palaeocene–Eocene thermal maximum

نویسندگان

  • Juan C. Larrasoaña
  • Andrew P. Roberts
  • Stephen A. Schellenberg
  • John D. Fitz
  • Richard D. Norris
  • James C. Zachos
چکیده

Distinct magnetic properties of marine sediments that record the Palaeocene–Eocene thermal maximum (PETM) have been suggested to be due to a bacterial magnetofossil signal that is linked to enhanced weathering conditions during the PETM. We document the dominance of bacterial magnetite in deep-sea sediments from southern Kerguelen Plateau (Ocean Drilling Program Hole 738C, southern magnetofossils throughout the PETM indicates that the occurrence of bacterial magnetosomes is not due to a preservation effect. Instead, we suggest that it is due to sustained mild iron-reducing conditions that dissolved the most labile aeolian-derived iron, which favoured continued magnetotactic bacterial activity without being strong enough to dissolve the less reactive magnetite and haematite. Enhanced aeolian haematite abundances at the beginning of the PETM indicate drier conditions on the neighbouring Antarctic continent at those times. Our results provide evidence that iron fertilisation by aeolian dust was the main limiting factor that conditioned proliferation of magnetotactic bacteria in the deep sea at the southern Kerguelen Plateau, with the exception of two short periods of rapidly changing palaeoenvironmental conditions at the onset and termination of the PETM. Increased iron supply from aeolian dust, that enhanced oceanic primary productivity and subsequent delivery of organic carbon to the seafloor, along with mild iron-reducing diagenetic conditions, seem to have been necessary to provide the iron needed for magnetite biomineralization by magnetotactic bacteria to drive their marked increase in abundance in the studied PETM record from southern Kerguelen Plateau. Our analyses of a deep-sea PETM record from Hole 1051B at Blake Nose (Atlantic Ocean) failed to identify magnetofossils despite evidence for the occurrence of magnetite and haematite of probable aeolian origin. Contrasting magnetic properties at these PETM sections indicate that further work is needed to understand the palaeoenvironmental and diagenetic factors whose interactions lead to production and preservation of magnetofossils in deep-sea sediments. & 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric...

متن کامل

The extended Price equation quantifies species selection on mammalian body size across the Palaeocene/Eocene Thermal Maximum.

Species selection, covariation of species' traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the la...

متن کامل

Paratropical floral extinction in the Late Palaeocene–Early Eocene

The Palaeocene–Eocene Thermal Maximum (PETM) at c. 55.8 Ma marks a transient (c. 100 ka duration) interval of rapid greenhouse warming that had profound effects on marine and terrestrial biota. Plant communities responded rapidly with major compositional turnover. The long-term effects on tropical vegetation communities that stem from the brief period of global warming are unclear. We present p...

متن کامل

Magnetofossil Spike During the Paleocene-Eocene Thermal Maximum: Ferromagnetic Resonance, Rock Magnetic, and Electron Microscopy Evidence from Ancora, New Jersey, USA

Previous workers identified a magnetically anomalous clay layer deposited on the northern United States Atlantic Coastal Plain during the Paleocene-Eocene Thermal Maximum (PETM). The finding inspired the highly controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR), isothermal and anhysteretic remanent magnetization, first order reversa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012